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Direct experimental test of scalar confinement
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The concept of Lorentz scalar quark confinement has a long history and is still widely used despite
its well-known theoretical faults. We point out here that the predictions of scalar confinement
also conflict directly with experiment. We investigate the dependence of heavy-light meson mass
differences on the mass of the light quark. In particular, we examine the strange and non-strange
D mesons. We find that the predictions of scalar confinement are in considerable conflict with
measured values.

I. A LITTLE HISTORY

Within a year of the discovery of charmonium in 1974,
a picture emerged of two massive quarks moving in the
QCD motivated static potential [1],

V (r) = − k

r
+ ar. (1)

Here the color Coulomb constant k is given by k = 4αs/3
in lowest order perturbation theory and a is the confine-
ment constant, or asymptotic confining force. The non-
relativistic Schrödinger equation accounted in a natural
way for the spin averaged cc̄ and bb̄ spectra and decay
rates [2]. It was soon realized that in order to under-
stand the spin dependence of the heavy onia states one
must further specify the Lorentz transformation proper-
ties of the interaction. Henriques, Kellett, and Moor-
house [3] proposed that the short range Coulombic part
was a Lorentz vector and the long range confining part
a Lorentz scalar. The reasoning by the above group and
others [2, 4] was that in order to account for observations,
the spin-orbit interaction must be suppressed by a par-
tial cancelation between the short-range and long-range
contributions.

This picture flourished unchallenged for fifteen years
despite the lack of success in formally relating scalar con-
finement to QCD. Around 1990, the work of the Milan
group [5] clarified this question dramatically. Using the
low velocity Wilson loop formalism pioneered by Eichten
and Feinberg [6], and later by Gromes [7], they found
both the spin-dependent and spin-independent relativis-
tic corrections in heavy onia. Their astounding result
was that the long-range spin-independent QCD correc-
tions differed from those of scalar confinement, though

the long-range spin-orbit corrections were the same pure
Thomas ones given by scalar confinement. These results
were subsequently verified by lattice simulations of QCD
[8].

Because the spin-independent relativistic corrections
to scalar confinement are incorrect, the scalar confine-
ment scenario should logically be discarded. Indeed, the
whole concept of potential confinement is in error. For-
tunately, there is an alternative physical picture that can
be employed. Back in 1982, Buchmüller [9] pointed out
that a color electric flux tube should automatically yield
the desired pure Thomas spin-orbit interaction because
there is no color magnetic field in the quark rest frame. In
1992, it was shown that the spin-independent relativistic
corrections [10] to the flux tube model exactly matched
the QCD predictions [5]. Recently, we have constructed a
consistent classical action for spinning quarks connected
by a QCD string (flux tube) [11]. Hence there exists a
simple physical picture that is consistent in many ways
with QCD and is not a simple potential model.

Although inconsistent with QCD, scalar confinement
models remain popular, probably because of their relative
ease of solution. In this paper we point out an instance
where the predictions of spin-independent scalar confine-
ment disagree directly with experiment. We consider
here the dependence of heavy-light (HL) meson masses
on the light quark mass. We discuss a general HL poten-
tial model wave equation in Sec. II and exhibit a simple
analytic perturbative solution for scalar confinement. We
demonstrate the high accuracy of our numerical solutions
by comparing them to the analytic ones. In Sec. III we
collect and discuss the experimental data which we will
compare to our predictions. In particular, we will estab-
lish that spin splittings do not depend on the mass of the
light quark. Comparison of three confinement scenarios
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to data is given in Sec. IV, where we give theoretical val-
ues obtained by exact numerical solution of the spinless
Salpeter equation for both scalar and time component
vector (TCV) confinement as well as flux tube confine-
ment. Our conclusions in Sec. V are that scalar con-
finement predictions of the light quark mass dependence
are not good and can be clearly seen in the difference
of S -wave and P -wave meson states. We note further
that electric (TCV) confinement also does not account
for this difference but that the flux tube model exhibits
remarkable agreement with experimental data.

II. SCALAR CONFINEMENT EQUATION: A

PERTURBATIVE SOLUTION AND AN EXACT

NUMERICAL SOLUTION

A. The heavy-light potential model

We consider a spinless quark of mass m that moves in
a potential field. We assume that this field consists of
central Lorentz scalar and time component vector fields,
S(r) and V (r) respectively. The expected Lagrangian for
this system is

L = −m(r)
√

1 − v2 − V (r), (2)

m(r) = m + S(r). (3)

The momentum and Hamiltonian are then

p = m(r) γ v, (4)

H = v · p− L, (5)

where γ = 1/
√

1 − v2.
By squaring p, we see that

m(r) γ =
√

p2 + m(r)2. (6)

Substitution into the Hamiltonian (5) then yields

H =
√

p2 + (m + S(r))2 + V (r). (7)

For a state of definite angular momentum ℓ the mo-
mentum square can be written

p
2 = pr

2 +
ℓ(ℓ + 1)

r2
. (8)

With the usual replacement p2
r → − 1

r
d2

dr2 r, we obtain
a wave equation that can always be solved numerically
[12].

B. A perturbative estimate of the light quark mass

dependence

We next consider a simple model with scalar confine-
ment, S(r) = a|r| = ar and a time component vector

short range interaction, V (r) = − k
|r| = −k

r
. From the

general Hamiltonian (7), we find

H =
√

p2 + (m + ar)2 − k

r
. (9)

We wish to treat the short range parameter k and the
light quark mass m as small perturbations. In the case
where both k and m vanish, the zeroth order Hamiltonian
is

H0 =
√

p2 + (ar)2. (10)

The Hamiltonian H0 has the same eigenstates as its
square which, with the replacements of Eq. (8) and p2

r →
− 1

r
d2

dr2 r, leads to the harmonic oscillator equation,

d2u0

dr2
+

(

E2
0 − ℓ(ℓ + 1)

r2
− a2r2

)

u0 = 0, (11)

where in the limit of small r, u0 → rℓ+1 and u0 is nor-
malized to

∫ ∞

0

dr |u0|2 = 1. (12)

The solution for the wave function and eigenvalue is stan-
dard;

u0(r) = Nn,ℓ rℓ+1 e−
1

2
ar2

L
ℓ+ 1

2

n−1(ar2), (13)

N 2
n,ℓ =

2aℓ+ 3

2 (n − 1)!

Γ(ℓ + n + 1
2
)

, (14)

E2
0 = 2a

(

ℓ + 2n − 1

2

)

. (15)

Here L
ℓ+ 1

2

n−1(ar2) is the usual Laguerre polynomial, n is a
positive integer starting with 1, and ℓ is a non-negative
integer starting with zero.

We now determine the effect of turning on k and m
using the Feynman-Hellmann theorem [13],

∂E/∂λ = 〈∂H/∂λ〉, (16)

where λ is any parameter of the Hamiltonian. Taking
the expectation values using the k = m = 0 wavefunc-
tions (13) will yield an expansion in these parameters.
To leading order we have

E = E0 − k
〈

r−1
〉

+
ma

E0

〈r〉 + . . . . (17)

The expectation values are worked out in general in
the Appendix. Here we only consider the m and k de-
pendence of the 1S and 1P states (i.e., n = 1 and ℓ = 0
and 1). The results are,

〈r−1〉
1S

= 2

√

a

π
, (18)
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〈r−1〉
1P

=
4

3

√

a

π
, (19)

〈r〉
1S

=
2√
πa

, (20)

〈r〉
1P

=
8

3
√

πa
. (21)

Using Eq. (17), we obtain the m dependence near k =
m = 0 (m slope) for the energies,

dE1S

dm
=

2√
3π

= 0.6515, (22)

d(E1P − E1S)

dm
=

2√
3π

(

4√
15

− 1

)

= 0.0214. (23)

Again using Eq. (17) we obtain the k dependence near
k = m = 0 (k slope) for the energies,

1√
a

dE1S

dk
= −2

√

1

π
= − 1.128, (24)

1√
a

d(E1P − E1S)

dk
=

2

3

√

1

π
= 0.376. (25)

C. Consistency of the exact numerical solution and

the analytic perturbative solution

Before we proceed to a detailed comparison of the
predictions of scalar confinement with the experimental
data, we pause to verify the accuracy of our numerical
method. In particular, we compare our analytic values
for the slopes at m = k = 0 in Eqs. (22) to (25) with
our numerical method. This step is important because a
general analytic solution of the spinless Salpeter equation
is not known. Only for the remarkable case of a massless
particle and linear scalar confinement, which is equiva-
lent to the non-relativistic harmonic oscillator, can one
obtain an analytic solution. In the general case, one must
rely on exact numerical solutions. Some time ago, we in-
troduced [12] a variational method, the Galerkin method,
into particle physics to solve the spinless Salpeter equa-
tion with a time component vector interaction. This very
robust method is applicable to a wide range of differen-
tial and integral equations. The method has been sharp-
ened over the years by many authors [14]. One can cope
with eigenvalue equations for operators that are compli-
cated functions of both momenta and coordinates, such
as the scalar confinement Hamiltonian (9), by using ba-
sis functions that can be Fourier transformed. We have
performed a careful numerical solution of the eigenvalue
equation for the Hamiltonian (9), for small k and m, and
found the m and k slopes. The results are in excellent
agreement with the values obtained by analytic calcula-
tion in Eqs. (22) through (25).

III. EXPERIMENTAL DATA

A. Spin splitting is independent of light quark mass

We first use experimental data to demonstrate, rather
conclusively, that spin splittings within a given orbital
angular momentum multiplet do not depend on the light
quark mass. In particular, we consider several heavy-
light meson spin multiplets in which both the strange
and non-strange members have been observed [15]. First
we examine the D and Ds type mesons with ℓ = 0 (S -
waves). The hyperfine splittings for Ds and D mesons
are

D∗
s − Ds = 143.8 ± 0.4 MeV,

D∗
± − D± = 140.64 ± 0.10 MeV, (26)

D∗
0 − D0 = 142.12 ± 0.07 MeV.

The corresponding S -wave hyperfine splittings for B type
states are

B∗
s − Bs = 47.0 ± 2.6 MeV,

B∗ − B = 45.78 ± 0.35 MeV. (27)

It is clear that the substitution of a strange quark for
a non-strange light quark changes the S -wave hyperfine
differences by at most a few MeV.

We next consider some measured P -wave heavy-light
spin splittings. From [15] we find,

Ds2 − Ds1 = 37.0 ± 1.6 MeV,

D0
2 − D0

1 = 36.7 ± 2.7 MeV, (28)

D±
2 − D±

1 = 32 ± 6 MeV.

Again we note the apparent vanishing of light quark
mass dependence this time in a P -wave spin splitting. We
conclude that spin splittings are only weakly dependent
on the light quark mass. We will exploit this fact in
section III C.

B. The light quark mass dependence of a 1P−1S

difference

In the preceding subsection we observed from exper-
iment that both S -wave and P -wave heavy-light spin
splittings (within a spin multiplet) were independent of
the light quark mass. We next consider the mass split-
tings between pairs of states corresponding to different
orbital angular momenta and examine the light quark
mass dependence of this difference. We choose the D1

P -wave state and the pseudoscalar D meson. The best
measurements are

∆u = D0
1 − D0 = 557.5 ± 2 MeV. (29)

When the u light quark is replaced by a strange quark,
the corresponding difference becomes

∆s = Ds1 − Ds = 567.3 ± 0.4 MeV. (30)
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The differences ∆u and ∆s are amazingly similar. We
see that they differ by

∆ = ∆s − ∆u = 9.8 ± 2 MeV. (31)

C. Conclusion for the spin-averaged 1P−1S

difference

We demonstrated in Sec. III A that both S - and P -
wave spin splittings are, within error and isospin uncer-
tainty, independent of light quark mass. We may there-
fore conclude that the m-dependence of the difference
∆s − ∆u also represents the m-dependence of the spin-
averaged 1P−1S excitation energies. To show this ex-
plicitly, we write the HL meson mass as the sum of the
heavy quark mass and the excitation energy,

M = mQ + E. (32)

We then separate the excitation energy into spin-
averaged and spin-dependent parts,

E = ESA + ESD. (33)

As in Eqs. (29) and (30), we define ∆s and ∆u to
be the differences between P -wave (JP = 1+) and S -
wave (JP = 0−) states, for strange and non-strange
light quarks respectively. Using our observation that the
spin-dependent parts are essentially independent of light
quark mass, we see that the spin dependent parts will
cancel in the difference ∆ = ∆s − ∆u. Thus

∆ = (E1P − E1S)s − (E1P − E1S)u (34)

measures the light quark mass dependence of the spin-
independent 1P−1S level difference.

Two main results emerge from this subsection. First,
the light quark mass dependence is only about 2% of
the measured level difference. This is a useful tool in
the analysis of heavy-light spectroscopy [16]. Second,
although it is small, ∆ is definitely not zero. We will use
the actual value (31) to test the predictions of various
assumptions about the nature of quark confinement.

IV. COMPARISON WITH EXPERIMENT

We are now prepared to compare carefully the different
confinement predictions with experiment. As we orig-
inally noted [16], the m dependences of all the heavy-
light states are amazingly similar. We have also noted in
Sec. II C that this universal m dependence is nearly sat-
isfied in an analytical calculation. In the example with
scalar confinement, the m slope for the difference 1P−1S
is about 30 times smaller than each separate slope. Fur-
thermore, we noted in Sec. III B that when one compares
two heavy-light states, one P -wave and one S -wave, the
difference changes by less than 2% when a non-strange

light quark is replaced by a strange one. This change is
not zero however, but for the D1 and D states has the
experimental value (31)

∆ = ∆s − ∆u = 9.8 ± 2 MeV. (35)

In Fig. 1 we show the numerical mass splittings of heavy-
light mesons for three different confinement scenarios, all
with the same short range energy −k/r, and the same
k = 0.5, as a function of light quark mass. Each of
the three confinement scenarios has the same asymptotic
confinement force, a = 0.18 GeV2. The upper curve
assumes linear scalar confinement, the middle curve is
the prediction of the relativistic flux tube and the lower
curve linear time component vector confinement. In the
scalar and time component vector potentials, the poten-
tials S(r) and the long-range part of V (r) respectively
are ar. In the case relativistic flux tube model the string
tension is a.
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FIG. 1: Dependence of the 1P−1S energy level difference on
the light quark mass m. The numerical results compare dif-
ferent confinement mechanisms (all with the same long range
confinement force a = 0.18 GeV2 and all three calculations
assume the same short range Coulombic constant k = 0.5.)

We note that the scalar confinement has the most rapid
increase of the 1P−1S difference as the light quark mass
increases. The flux tube confinement is intermediate
and time component vector linear confinement actually
decreases slightly. Using the reasonable values for the
strange quark mass (500 MeV) and the non-strange mass
(300 MeV) [16], we find the following values for ∆,

∆scalar = 19 MeV, (36)

∆flux tube = 10 MeV, (37)

∆TCV = −1 MeV. (38)

In comparing these values to the experimental value given
in Eq. (31),

∆exp = 9.8 ± 2 MeV, (39)
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we observe that both scalar confinement and time com-
ponent vector confinement are quite inconsistent with the
experimental result. However, the flux tube confinement
prediction is in agreement with the experimental result.
These results are depicted in Fig. 2.

∆

0

10

20

[M
eV

]

scalar

flux tube

tcv

FIG. 2: The difference in the 1P−1S energy gap between
a light quark mass value of 500 MeV and 300 MeV. The
experimental value is the dot below the 10 MeV level. All
theoretical predictions have the same long range confinement
force, a = 0.18 GeV2, and the same short range Coulombic
constant, k = 0.5.

V. DISCUSSION

A. m slopes and the k value

The reader may have noticed that the m slope for the
1P−1S difference calculated analytically (23) is about
0.02 whereas the m slope in Fig. 1 is about five times
larger. This is because the Coulomb constant k is zero in
the analytical result and has the more realistic value 0.5
in the numerical calculations shown in Fig. 1. The effect
is magnified due to the strong cancelation in the 1P−1S
difference.

The choice k = 0.5 is quite reasonable. As we noted in
[16], the spin-averaged experimental value for E1P −E1S

can be extracted from the Ds mesons;

E1P − E1S = 439 MeV. (40)

The appropriate choice of k is determined by computing
the above quantity as a function of k as shown in Fig. 3.
We conclude that the common value of k = 0.5 assumed
in the considerations of the last section was appropriate
and that the effect of a slightly larger k would only make
our conclusions stronger.

B. Constituent quark masses

Another interesting result of a choice of confinement
scenario is a constraint that relates the non-strange and
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m=0 MeV1P
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FIG. 3: The 1P−1S level difference as a function of the
Coulomb constant k for scalar confinement. In this case there
is a noticeable dependence on the light quark mass m and we
show the calculation for m = 0, 300, and 600 MeV. Since the
experimental value was found for Ds mesons we see a value
of k = 0.53 is indicated with m = 500 MeV.

strange light quark masses. This relation is the result of
the measured value for the Bs and B mass difference,

Bs − B ≃ 91 MeV. (41)

0.0
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200.0
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400.0

500.0

600.0

0 50 100 150 200 250 300 350 400

m
   

[M
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]

m   [MeV]

s

u

scalar

flux tube

FIG. 4: The constraint between ms and mu light quark
masses due to the measured Bs − B mass difference (41).
The solid curve assumes scalar confinement while the dashed
curve is due to flux-tube confinement. The “data” points are
quark masses analyses of hyperon magnetic moments in the
constituent quark model [15, 17].

In Fig. 4 we show this constraint scalar confinement
and flux tube confinement scenarios. Although the curves
differ considerably for small light quark mass, they are
quite similar in the larger range. On the figure we show
constituent quark masses obtained by analyses of hy-
peron magnetic moments [15, 17]. The result justifies
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our choice of 500 MeV for the strange quark and 300
MeV for the non-strange quark.

VI. CONCLUSIONS

Our points in this paper may be quickly summarized.

• From the data, we conclude that spin splittings do
not vary with light quark mass value. We then can
extract the change (31) in the spin-averaged 1P−1S
level difference as one replaces the non-strange by
a strange light quark.

• We compare the predictions of the scalar poten-
tial, time component vector potential and flux-tube
quark confinement scenarios with experimental re-
sults, as shown in Fig. 2. The conclusion is that
flux-tube confinement works well while both scalar
and time component vector confinement fail badly.

We observe therefore that scalar confinement has at
least one specific point of disagreement with experiment.
This complements the theoretical disagreements with
QCD mentioned in the introduction.
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APPENDIX A: EXPECTATION VALUES

The principal aim here is to compute the expectation
value of rp with the harmonic oscillator wavefunctions
(13),

〈rp〉 = N2
n,ℓ

∫ ∞

0

dr r2ℓ+2+p e−ar2
[

L
ℓ+ 1

2

n−1(ar2)
]2

. (A1)

A change of integration variable to the dimensionless
combination z = a r2 yields

2 aℓ+ 3

2
+ p

2 〈rp〉 = N2
n,ℓ

∫ ∞

0

dz zℓ+ 1

2
+ p

2 e−z
[

L
ℓ+ 1

2

n−1(z)
]2

.

(A2)
It is helpful to use the Chu-Vandermonde sum formula
[18],

Lα
n−1(z) =

n
∑

j=1

(α − β)n−j

(n − j)!
Lβ

j−1(z), (A3)

where the Pochhammer symbol (z)N is defined as,

(z)N = z(z + 1) · · · (z + N − 1) =
Γ(z + N)

Γ(z)
, (A4)

(z)0 = 1. (A5)

With the choices

α = ℓ +
1

2
, (A6)

β = ℓ +
1

2
+

p

2
, (A7)

α − β = − p

2
, (A8)

we substitute Eq. (A3) into (A2) and use the orthonor-
mality relation for Laguerre polynomials [18]

∫ ∞

0

dz zβ e−z Lβ
j (z)Lβ

j′(z) =
Γ(j + β + 1)

j!
δjj′ , (A9)

to obtain our general result,

〈rp〉 = a− p

2

n
∑

j=1

[

(

−p

2

)

n−j

]2 (

n − 1
j − 1

)

Γ(j + ℓ + 1
2

+ p
2
)

Γ(n + ℓ + 1
2
)(n − j)!

.

(A10)
In Eq. (A10) we use the notation for the binomial coeffi-
cients,

(

n
m

)

=
n!

m!(n − m)!
. (A11)

The specific result that is required in Sec. II B is for the
ground state (n = 1) is

〈rp〉
n=1

= a−p

2

Γ(ℓ + 3
2

+ p
2
)

Γ(ℓ + 3
2
)

(A12)

Some cases of direct interest are

p = −1 :
〈

r−1
〉

=
√

a
Γ(ℓ + 1)

Γ(ℓ + 3
2
)
, (A13)

p = 0 : 〈1〉 = 1, (A14)

p = 1 : 〈r〉 =
1√
a

Γ(ℓ + 2)

Γ(ℓ + 3
2
)
, (A15)

p = 2 : 〈r2〉 =
1

a

(

ℓ +
3

2

)

. (A16)
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